

WEEKLY TEST TARGET JEE MATHEMATICS SOLUTION 13 OCTOBER 2019

61. (b) The equation of the parabola referred to its vertex as the origin is $X^2 = IY$, where x = X + a, y = Y + b. Therefore the equation of the parabola referred to the point (*a*,*b*) as the vertex is

$$(x-a)^2 = l(y-b)$$
 or $(x-a)^2 = \frac{l}{2}(2y-2b)$.

- 62. (c) $y^2 4y + 4 = 5x + 5 \Rightarrow (y 2)^2 = 5(x + 1)$ Obviously, latus rectum is 5.
- 63. (a) Here vertex = (0, 6) and focus = (0, 3) then Z = (0, 9) *i.e.*, y = 9 \therefore Equation of parabola, SP = PM $\Rightarrow \sqrt{(x-0)^2 + (y-3)^2} = |y-9|$ $\Rightarrow x^2 + y^2 - 6y + 9 = y^2 - 18y + 81$ or $x^2 + 12y = 72$.
- 64. (d) Let point of contact be (h, k), then tangent at this point is ky = x + h. $x - ky + h = 0 \equiv 18x - 6y + 1 = 0$

or
$$\frac{1}{18} = \frac{k}{6} = \frac{h}{1}$$
 or $k = \frac{1}{3}$, $h = \frac{1}{18}$.

65. (b) $S_1 \equiv x^2 - 108y = 0$

$$T = xx_1 - 2a(y + y_1) = 0 \implies xx_1 - 54\left(y + \frac{x_1^2}{108}\right) = 0$$

$$S_2 = y^2 - 32x = 0$$

$$T = yy_2 - 2a(x + x_2) = 0 \implies yy_2 - 16\left(x + \frac{y_2^2}{32}\right) = 0$$

$$\therefore \frac{x_1}{16} = \frac{54}{y_2} = \frac{-x_1^2}{y_2^2} = r \implies x_1 = 16r \text{ and } y_2 = \frac{54}{r}$$

$$\therefore \frac{-(16r)^2}{(54/r)^2} = r \implies r = -\frac{9}{4}$$

$$x_1 = -36, y_2 = -24, y_1 = \frac{(36)^2}{108} = 12, x_2 = 18.$$

$$\therefore \text{ Equation of common tangent}$$

$$(y - 12) = \frac{-36}{54}(x + 36) \implies 2x + 3y + 36 = 0$$

Aliter : Using direct formula of common tangent $yb^{1/3} + xa^{1/3} + (ab)^{2/3} = 0$, where a = 8 and b = 27. Hence the required tangent is 3y + 2x + 36 = 0.

66. (c)
$$y = -\frac{l}{m}x - \frac{n}{m}$$

Condition for above line to be tangent to $y^2 = 4ax$ is $-\frac{n}{m} = \frac{am}{-l}$ or $nl = am^2$.

67. (b) Equation of parabola is
$$Y^2 = 4X$$
, where $X = x + \frac{5}{4}$
Tangent parallel to $Y = 2X + 7$ is $Y = 2X + \frac{a}{m}$

$$\Rightarrow y = 2\left(x + \frac{5}{4}\right) + \frac{1}{2} \Rightarrow y = 2x + 3 i.e., \ 2x - y + 3 = 0.$$

- **68.** (b) $y = 2x + \lambda$ does not meet, if $\lambda > \frac{a}{m} = \frac{1}{2.2} = \frac{1}{4} \Longrightarrow \lambda > \frac{1}{4}$.
- **69.** (a) Tangent to parabola is, $y = mx + \frac{a}{m}$ (i)

A line perpendicular to tangent and passing from focus (a, 0) is, $y = -\frac{x}{m} + \frac{a}{m}$(ii)

Solving both lines (i) and (ii) $\Rightarrow x = 0$.

- 70. (c) $m_1 = \tan 45^\circ = 1$, $m_2 = 3$ Slope of tangent $= \frac{3 \pm 1}{1 \mp 3} = -2 \text{ or } \frac{1}{2}$ Tangent is $y = -2x + \frac{2}{-2} \text{ or } 2x + y + 1 = 0$.
- **71.** (a) Any line through origin is y = mx. Since it is a tangent to $y^2 = 4a(x a)$, it will cut it in two coincident points.

 \therefore Roots of $m^2x^2 - 4ax + 4a^2 = 0$ are equal.

$$\therefore 16a^2 - 16a^2m^2 = 0 \text{ or } m^2 = 1 \text{ or } m = 1,-1$$

Product of slopes = -1. Hence it is a right angled triangle.

72. (b) Let the co-ordinates of P and Q be (at₁², 2at₁) and (at₂², 2at₂) respectively. Then y₁ = 2at₁ and y₂ = 2at₂. The co-ordinates of the point of intersection of the tangents at P and Q are {at₁t₂, a(t₁ + t₂)}
∴ y₃ = a(t₁ + t₂)

$$\Rightarrow$$
 $y_3 = \frac{y_1 + y_2}{2} \Rightarrow y_1, y_3$ and y_2 are in A.P.

- **73.** (c) \therefore Parabola passes through the point (1,-2), then $4 = 4a \Rightarrow a = 1$ Formula for tangent, $yy_1 = 2a(x + x_1) \Rightarrow -2y = 2(x + 1)$ Required tangent is, x + y + 1 = 0.
- **74.** (b) The equation of the tangent at point (*a*, 2*a*) of the parabola $y^2 = 4ax$ is $yy_1 = 2a(x + x_1)$ $\Rightarrow 2ay = 2a(x + a) \Rightarrow y = x + a$ This line makes an angle of $\pi / 4$ with the x-axis, as $m = \tan \theta = 1$.
- 75. (c) Any tangent to $y^2 = 4x$ is $y = mx + \frac{1}{m}$. It touches the circle, if $3 = \begin{vmatrix} \frac{3m + \frac{1}{m}}{\sqrt{1 + m^2}} \end{vmatrix}$ or $9(1 + m^2) = \left(3m + \frac{1}{m}\right)^2$ or $\frac{1}{m^2} = 3$, $\therefore m = \pm \frac{1}{\sqrt{3}}$.

For the common tangent to be above the *x*-axis, $m = \frac{1}{\sqrt{3}}$

- :: Common tangent is, $y = \frac{1}{\sqrt{3}}x + \sqrt{3} \implies \sqrt{3}y = x + 3$.
- **76.** (b) Any tangent to $y^2 = 4x$ is $y = mx + \frac{1}{m}$

Since it passes through (1, 4), we have $4 = m + \frac{1}{m}$ $\Rightarrow m^2 - 4m + 1 = 0 \Rightarrow m_1 + m_2 = 4$, $m_1 m_2 = 1$ $\Rightarrow |m_1 - m_2| = 2\sqrt{3}$ If θ is the required angle, then $\tan \theta = \frac{2\sqrt{3}}{1+1} = \sqrt{3}$ $\Rightarrow \theta = \frac{\pi}{3}$.

77. (b) Any line through origin (0,0) is y = mx. It intersects $y^2 = 4ax$ in $\left(\frac{4a}{m^2}, \frac{4a}{m}\right)$.

Mid point of the chord is $\left(\frac{2a}{m^2}, \frac{2a}{m}\right)$ $x = \frac{2a}{m^2}, y = \frac{2a}{m} \Rightarrow \frac{2a}{x} = \frac{4a^2}{y^2}$ or $y^2 = 2ax$, which is a parabola.

- **78.** (c) Equation of chord of contact of tangent drawn from a point (x_1, y_1) to parabola $y^2 = 4ax$ is $yy_1 = 2a(x + x_1)$ so that $5y = 2 \times 2(x + 2) \implies 5y = 4x + 8$. Point of intersection of chord of contact with parabola $y^2 = 8x$ are $(\frac{1}{2}, 2)$, (8, 8), so that length $= \frac{3}{2}\sqrt{41}$.
- **79.** (a) The combined equation of the lines joining the vertex to the points of intersection of the line lx + my + n = 0 and the parabola $y^2 = 4ax$, is

$$y^{2} = 4ax \left(\frac{lx + my}{-n}\right) \text{ or } 4alx^{2} + 4amxy + ny^{2} = 0$$

80. (c) $\Delta = \frac{1}{2}(12 \times 3) = 18$ sq. unit

81. (b) $L_1 = \sqrt{3}y - x = 0$, solving L_1 and $S_1 \equiv y^2 - 4ax = 0$ Then $y = 4a\sqrt{3}$ and x = 12aHence $L = \sqrt{144a^2 + 48a^2}$ $= a\sqrt{192} = 8a\sqrt{3}$.

- 82. (b) Chord of contact of (-1, 2) is $yy_1 = 2a(x + x_1)$ or y = x 1.
- **83.** (c) Equation of tangent at (1, 7) to $y = x^2 + 6$

$$\frac{1}{2}(y+7) = x.1+6 \implies y = 2x+5 \qquad \dots (i)$$

This tangent also touches the circle
$$x^{2} + y^{2} + 16x + 12y + c = 0 \qquad \dots \dots (ii)$$

Now solving (i) and (ii), we get
$$\implies x^{2} + (2x+5)^{2} + 16x + 12(2x+5) + c = 0$$

 $\Rightarrow 5x^2 + 60x + 85 + c = 0$ Since, roots are equal so

 $b^2 - 4ac = 0 \implies (60)^2 - 4 \times S \times (85 + c) = 0$

$$\Rightarrow 85 + c = 180 \Rightarrow 5x^2 + 60x + 180 = 0$$

$$\Rightarrow x = -\frac{60}{10} = -6 \Rightarrow y = -7$$

(c) Given parabola is $y^2 = 2ax$ 84. \therefore Focus (a/2, 0) and directrix is given by x = -a/2, as circle touches the directrix. \therefore Radius of circle = distance from the point (a/2, 0) to the line $(x = -a/2) = \frac{\left|\frac{a}{2} + \frac{a}{2}\right|}{\sqrt{1}} = a$ (-a/2, 0) (a/2, 0):. Equation of circle be $\left(x - \frac{a}{2}\right)^2 + y^2 = a^2$ (i) also $y^2 = 2ax$(ii) Solving (i) and (ii) we get $x = \frac{a}{2}, -\frac{3a}{2}$ Putting these values in $y^2 = 2ax$ we get $y = \pm a$ and x = -3a/2 gives imaginary values of y. \therefore Required points are $(a / 2, \pm a)$. (b) Let point be (h, k). Normal is $y - k = \frac{-k}{4}(x - h)$ or -kx - 4y + kh + 4k = 085. Gradient $= -\frac{k}{4} = \frac{1}{2} \implies k = -2$ Substituting (h, k) and k = -2, we get $h = \frac{1}{2}$ Hence point is $\left(\frac{1}{2}, -2\right)$. Trick : Here only point $\left(\frac{1}{2}, -2\right)$ satisfies the parabola $y^2 = 8x$. 86. (a) Normal at (h, k) to the parabola $y^2 = 8x$ is $y-k=-\frac{k}{4}(x-h)$ Gradient = $\tan 60^\circ = \sqrt{3} = -\frac{k}{4} \Rightarrow k = -4\sqrt{3}$ and h = 6Hence required point is $(6, -4\sqrt{3})$. 87. (d) y = -2x - k is normal to $y^2 = -8x$ Or $-k = -\{-4(-2) - 2(-2)^3\} = -(8 + 16) \implies k = 24$. (d) We know that $t_2 = -t_1 - \frac{2}{t_2}$ 88. Put $t_1 = 1$ and $t_2 = t$. Hence t = -3.

89. (c) Since the semi-latus rectum of a parabola is the harmonic mean between the segments of any focal chord of a parabola, therefore *SP*, 4, *SQ* are in H.P.

$$\Rightarrow 4 = 2 \cdot \frac{SP.SQ}{SP + SQ} \Rightarrow 4 = \frac{2(6)(SQ)}{6 + SQ} \Rightarrow SQ = 3.$$

90. (d) The equation of a normal to $y^2 = 4x$ at $(m^2, -2m)$ is $y = mx - 2m - m^3$. If the normal makes equal angles with the coordinates axes, then $m = \tan \frac{\pi}{4} = 1$. Thus, the required point is (1, -2).