WEEKLY TEST TARGETJEE MATHEMATICS SOLUTION 13 OCTOBER 2019

61. (b) The equation of the parabola referred to its vertex as the origin is $X^{2}=I Y$, where $X=X+a, y=Y+b$. Therefore the equation of the parabola referred to the point (a, b) as the vertex is $(x-a)^{2}=1(y-b)$ or $(x-a)^{2}=\frac{1}{2}(2 y-2 b)$.
62. (c) $y^{2}-4 y+4=5 x+5 \Rightarrow(y-2)^{2}=5(x+1)$

Obviously, latus rectum is 5 .
63. (a) Here vertex $\equiv(0,6)$ and focus $\equiv(0, \underline{3})$ then $Z \equiv(0,9)$ i.e., $y=9$
\therefore Equation of parabola, $\mathrm{SP}=\mathrm{PM}$
$\Rightarrow \sqrt{(x-0)^{2}+(y-3)^{2}}=|y-9|$
$\Rightarrow x^{2}+y^{2}-6 y+9=y^{2}-18 y+81$
or $x^{2}+12 y=72$.

64. (d) Let point of contact be (h,k), then tangent at this point is $k y=x+h$.
$x-k y+h=0 \equiv 18 x-6 y+1=0$
or $\frac{1}{18}=\frac{k}{6}=\frac{h}{1}$ or $k=\frac{1}{3}, h=\frac{1}{18}$.
65. (b) $S_{1} \equiv x^{2}-108 y=0$
$T \equiv x x_{1}-2 a\left(y+y_{1}\right)=0 \Rightarrow x x_{1}-54\left(y+\frac{x_{1}^{2}}{108}\right)=0$
$S_{2} \equiv y^{2}-32 x=0$
$T \equiv y y_{2}-2 a\left(x+x_{2}\right)=0 \Rightarrow y y_{2}-16\left(x+\frac{y_{2}^{2}}{32}\right)=0$
$\therefore \frac{\mathrm{x}_{1}}{16}=\frac{54}{\mathrm{y}_{2}}=\frac{-\mathrm{x}_{1}^{2}}{\mathrm{y}_{2}^{2}}=\mathrm{r} \Rightarrow \mathrm{x}_{1}=16 \mathrm{r}$ and $\mathrm{y}_{2}=\frac{54}{\mathrm{r}}$
$\therefore \frac{-(16 r)^{2}}{(54 / r)^{2}}=r \Rightarrow r=-\frac{9}{4}$
$x_{1}=-36, y_{2}=-24, y_{1}=\frac{(36)^{2}}{108}=12, x_{2}=18$.
\therefore Equation of common tangent
$(y-12)=\frac{-36}{54}(x+36) \Rightarrow 2 x+3 y+36=0$
Aliter: Using direct formula of common tangent $\mathrm{yb}^{1 / 3}+\mathrm{xa}^{1 / 3}+(a b)^{2 / 3}=0$, where $a=8$ and $b=27$. Hence the required tangent is $3 y+2 x+36=0$.
66. (c) $y=-\frac{1}{m} x-\frac{n}{m}$

Condition for above line to be tangent to $y^{2}=4 a x$ is $-\frac{n}{m}=\frac{a m}{-l}$ or $n l=a m^{2}$.
67. (b) Equation of parabola is $Y^{2}=4 X$, where $X=X+\frac{5}{4}$

Tangent parallel to $Y=2 X+7$ is $Y=2 X+\frac{a}{m}$
$\Rightarrow y=2\left(x+\frac{5}{4}\right)+\frac{1}{2} \Rightarrow y=2 x+3$ i.e., $2 x-y+3=0$.
68. (b) $\mathrm{y}=2 \mathrm{x}+\lambda$ does not meet, if $\lambda>\frac{\mathrm{a}}{\mathrm{m}}=\frac{1}{2.2}=\frac{1}{4} \Rightarrow \lambda>\frac{1}{4}$.
69. (a) Tangent to parabola is, $y=m x+\frac{a}{m}$

A line perpendicular to tangent and passing from focus $(a, 0)$ is, $y=-\frac{x}{m}+\frac{a}{m}$

Solving both lines (i) and (ii) $\Rightarrow x=0$.
70. (c) $\mathrm{m}_{1}=\tan 45^{\circ}=1, \mathrm{~m}_{2}=3$

Slope of tangent $=\frac{3 \pm 1}{1 \mp 3}=-2$ or $\frac{1}{2}$
Tangent is $\mathrm{y}=-2 \mathrm{x}+\frac{2}{-2}$ or $2 \mathrm{x}+\mathrm{y}+1=0$.
71. (a) Any line through origin is $y=m x$. Since it is a tangent to $y^{2}=4 a(x-a)$, it will cut it in two coincident points.
\therefore Roots of $m^{2} x^{2}-4 a x+4 a^{2}=0$ are equal.
$\therefore 16 \mathrm{a}^{2}-16 \mathrm{a}^{2} \mathrm{~m}^{2}=0$ or $\mathrm{m}^{2}=1$ or $\mathrm{m}=1,-1$
Product of slopes $=-1$. H ence it is a right angled triangle.
72. (b) Let the co-ordinates of P and Q be $\left(a t_{1}^{2}, 2 a t_{1}\right)$ and $\left(a t_{2}^{2}, 2 a t_{2}\right)$ respectively. Then $y_{1}=2 a t_{1}$ and $y_{2}=2 a t_{2}$. The co-ordinates of the point of intersection of the tangents at P and Q are $\left\{\mathrm{at}_{1} \mathrm{t}_{2}, \mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)\right\}$
$\therefore \mathrm{y}_{3}=\mathrm{a}\left(\mathrm{t}_{1}+\mathrm{t}_{2}\right)$
$\Rightarrow \mathrm{y}_{3}=\frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2} \Rightarrow \mathrm{y}_{1}, \mathrm{y}_{3}$ and y_{2} are in A.P.
73. (c) \because Parabola passes through the point $(1,-2)$, then $4=4 a \Rightarrow a=1$

Formula for tangent, $\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right) \Rightarrow-2 \mathrm{y}=2(\mathrm{x}+1)$
Required tangent is, $x+y+1=0$.
74. (b) The equation of the tangent at point (a,2a) of the parabola $y^{2}=4 a x$ is $y y_{1}=2 a\left(x+x_{1}\right)$
$\Rightarrow 2 a y=2 a(x+a) \Rightarrow y=x+a$
This line makes an angle of $\pi / 4$ with the x-axis, $\operatorname{asm}=\tan \theta=1$.
75. (c) Any tangent to $y^{2}=4 x$ is $y=m x+\frac{1}{m}$. It touches the circle, if $3=\left|\frac{3 m+\frac{1}{m}}{\sqrt{1+m^{2}}}\right|$ or $9\left(1+\mathrm{m}^{2}\right)=\left(3 \mathrm{~m}+\frac{1}{\mathrm{~m}}\right)^{2}$
or $\frac{1}{\mathrm{~m}^{2}}=3, \therefore \mathrm{~m}= \pm \frac{1}{\sqrt{3}}$.

For the common tangent to be above the x-axis, $m=\frac{1}{\sqrt{3}}$
\therefore Common tangent is, $y=\frac{1}{\sqrt{3}} x+\sqrt{3} \Rightarrow \sqrt{3} y=x+3$.
76. (b) Any tangent to $y^{2}=4 x$ is $y=m x+\frac{1}{m}$

Since it passes throguh $(1,4)$, we have $4=m+\frac{1}{m}$
$\Rightarrow \mathrm{m}^{2}-4 \mathrm{~m}+1=0 \Rightarrow \mathrm{~m}_{1}+\mathrm{m}_{2}=4, \mathrm{~m}_{1} \mathrm{~m}_{2}=1$
$\Rightarrow\left|m_{1}-m_{2}\right|=2 \sqrt{3}$
If θ is the required angle, then $\tan \theta=\frac{2 \sqrt{3}}{1+1}=\sqrt{3}$
$\Rightarrow \theta=\frac{\pi}{3}$.
77. (b) Any line through origin $(0,0)$ is $y=m x$. It intersects $y^{2}=4 a x$ in $\left(\frac{4 a}{m^{2}}, \frac{4 a}{m}\right)$.

Mid point of the chord is $\left(\frac{2 a}{\mathrm{~m}^{2}}, \frac{2 a}{m}\right)$
$x=\frac{2 a}{m^{2}}, y=\frac{2 a}{m} \Rightarrow \frac{2 a}{x}=\frac{4 a^{2}}{y^{2}}$ or $y^{2}=2 a x, \quad$ which is a parabola.
78. (c) Equation of chord of contact of tangent drawn from a point (x_{1}, y_{1}) to parabola $y^{2}=4 a x$ is $\mathrm{yy}_{1}=2 \mathrm{a}\left(\mathrm{x}+\mathrm{x}_{1}\right)$ so that $5 \mathrm{y}=2 \times 2(\mathrm{x}+2) \Rightarrow 5 \mathrm{y}=4 \mathrm{x}+8$. Point of intersection of chord of contact with parabola $y^{2}=8 x$ are $\left(\frac{1}{2}, 2\right),(8,8)$, so that length $=\frac{3}{2} \sqrt{41}$.
79. (a) The combined equation of the lines joining the vertex to the points of intersection of the line $\mathrm{lx}+\mathrm{my}+\mathrm{n}=0$ and the parabola $\mathrm{y}^{2}=4 \mathrm{ax}$, is
$y^{2}=4 a x\left(\frac{\mid x+m y}{-n}\right)$ or $4 a x^{2}+4 a m x y+n y^{2}=0$
80. (c) $\Delta=\frac{1}{2}(12 \times 3)=18$ sq. unit

81. (b) $L_{1}=\sqrt{3} y-x=0$, solving L_{1}
and $S_{1} \equiv y^{2}-4 a x=0$
Then $y=4 a \sqrt{3}$ and $x=12 a$
Hence $L=\sqrt{144 a^{2}+48 a^{2}}$
$=a \sqrt{192}=8 a \sqrt{3}$.

82. (b) Chord of contact of $(-1,2)$ is $y y_{1}=2 a\left(x+x_{1}\right)$ or $y=x-1$.
83. (c) Equation of tangent at $(1,7)$ to $y=x^{2}+6$
$\frac{1}{2}(y+7)=x \cdot 1+6 \Rightarrow y=2 x+5$
This tangent also touches the circle $x^{2}+y^{2}+16 x+12 y+c=0$
Now solving (i) and (ii), we get
$\Rightarrow \mathrm{x}^{2}+(2 \mathrm{x}+5)^{2}+16 \mathrm{x}+12(2 \mathrm{x}+5)+\mathrm{c}=0$
$\Rightarrow 5 x^{2}+60 x+85+c=0$
Since, roots are equal so
$\mathrm{b}^{2}-4 \mathrm{ac}=0 \Rightarrow(60)^{2}-4 \times 5 \times(85+\mathrm{c})=0$
$\Rightarrow 85+c=180 \Rightarrow 5 x^{2}+60 x+180=0$
$\Rightarrow x=-\frac{60}{10}=-6 \Rightarrow y=-7$
84. (c) Given parabola is $y^{2}=2 a x$
\therefore Focus $(a / 2,0)$ and directrix is given by $\mathrm{x}=-\mathrm{a} / 2$,
as circle touches the directrix.
\therefore Radius of circle $=$ distance from the point $(a / 2,0)$ to the line
$(x=-a / 2)=\frac{\left|\frac{a}{2}+\frac{a}{2}\right|}{\sqrt{1}}=a$

\therefore Equation of circle be $\left(x-\frac{a}{2}\right)^{2}+y^{2}=a^{2}$
also $y^{2}=2 a x$
Solving (i) and (ii) we get $x=\frac{a}{2},-\frac{3 a}{2}$
Putting these values in $y^{2}=2 a x$ we get
$y= \pm a$ and $x=-3 a / 2$ gives imaginary values of y.
\therefore Required points are $(a / 2, \pm a)$.
85. (b) Let point be (h, k). Normal is $y-k=\frac{-k}{4}(x-h)$ or $-k x-4 y+k h+4 k=0$

Gradient $=-\frac{k}{4}=\frac{1}{2} \Rightarrow k=-2$
Substituting (h,k) and $k=-2$, we get $h=\frac{1}{2}$
Hence point is $\left(\frac{1}{2},-2\right)$.
Trick : Here only point $\left(\frac{1}{2},-2\right)$ satisfies the parabola $y^{2}=8 x$.
86. (a) Normal at (h, k) to the parabola $y^{2}=8 x$ is
$y-k=-\frac{k}{4}(x-h)$
Gradient $=\tan 60^{\circ}=\sqrt{3}=-\frac{k}{4} \Rightarrow k=-4 \sqrt{3}$ and $h=6$
Hence required point is $(6,-4 \sqrt{3})$.
87. (d) $y=-2 x-k$ is normal to $y^{2}=-8 x$
or $-k=-\left\{-4(-2)-2(-2)^{3}\right\}=-(8+16) \Rightarrow k=24$.
88. (d) We know that $t_{2}=-t_{1}-\frac{2}{t_{1}}$

Put $t_{1}=1$ and $t_{2}=t$. Hence $t=-3$.
89. (c) Since the semi-latus rectum of a parabola is the harmonic mean between the segments of any focal chord of a parabola, therefore SP, 4, SQ are in H.P.
$\Rightarrow 4=2 \cdot \frac{\mathrm{SP} \cdot \mathrm{SQ}}{\mathrm{SP}+\mathrm{SQ}} \Rightarrow 4=\frac{2(6)(\mathrm{SQ})}{6+\mathrm{SQ}} \Rightarrow \mathrm{SQ}=3$.
90. (d) The equation of a normal to $y^{2}=4 x$ at $\left(m^{2},-2 m\right)$ is $y=m x-2 m-m^{3}$. If the normal makes equal angles with the coordinates axes, then $m=\tan \frac{\pi}{4}=1$. Thus, the required point is $(1,-2)$.

